Question 39: Let the graph of the function y=f(x) have the graph as shown. Find the maximum point of the function y=f(3-4x)

We have: \(y=f(3-4x)\Rightarrow y’=-4f'(3-4x)\)

Then \(y’>0\Leftrightarrow f'(3-4x)<0\Leftrightarrow-1<3-4x<1\Leftrightarrow \frac{1}{2}

Table to consider the sign y’=f'(3-4x):

Based on the sign review table, the function y=f(3-4x) peaks at x=1

===============